Math, asked by Ashvaneet7268, 1 year ago

In an office, there are 108 tables and 132 chairs. if 1/6 of the tables and 1/4 of the chairs are broken. how many people can work in the office if each person requires one table and one chair?

Answers

Answered by prettystefina11
30

Answer:

90 members

Step-by-step explanation:

Number of total tables = 108

Number of total chairs = 132

Number of broken tables = (1/6) of 108

                                       = (1/6) x 108

                                       = 18 tables

Number of broken chairs = (1/4) of 132

                                       = (1/4) x 132

                                       = 33 chairs

Number of remaining tables = (Number of total tables) — (Number of broken tables)

                                            = 108 — 18

                                            = 90 tables

Number of remaining chairs = (Number of total chairs) — (Number of broken chairs)

                                            = 132 — 33

                                            = 99 chairs

Given constraint;

A person needs a table and a chair to work.

So, the total number of people who could work in the office = 90 members (9 chairs will be kept aside as there are no tables)

Similar questions