Math, asked by GayathriPutti, 3 months ago

In any triangle ABC ((b^2-c^2)/a^2) is equal to​

Answers

Answered by mathdude500
5

Basic Identities Used :-

1. \:\red{\bf \:Sine \: law}

In triangle ABC, if a, b and c represents the sides BC, CA and AB respectively, then

 \sf \: \dfrac{a}{sinA}  = \dfrac{b}{sinB}  = \dfrac{c}{sinC} = k

\sf :\longmapsto\:a = k \: sinA

\sf :\longmapsto\:b = k \: sinB

\sf :\longmapsto\:c = k \: sinC

2. \:  \red{ \bf \: {sin}^{2}x -  {sin}^{2}y = sin(x + y)sin(x - y)}

3. \:  \red{ \bf \: sin(\pi \:  - x) = sinx}

Let's solve the problem now!!

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\dfrac{ {b}^{2} -  {c}^{2}  }{ {a}^{2} }

On substituting the values of a, b and c from sine law, we get

\rm \:  \:  =  \:  \: \dfrac{ {(ksinB)}^{2} -  {(ksinC)}^{2}  }{ {(ksinA)}^{2} }

\rm \:  \:  =  \:  \: \dfrac{ {k}^{2} {sin}^{2}B - {k}^{2} {sin}^{2}C  }{{k}^{2} {sin}^{2}A}

\rm \:  \:  =  \:  \: \dfrac{ {k}^{2} ({sin}^{2}B -{sin}^{2}C)}{{k}^{2} {sin}^{2}A}

\rm \:  \:  =  \:  \: \dfrac{({sin}^{2}B -{sin}^{2}C)}{{sin}^{2}A}

\rm \:  \:  =  \:  \: \dfrac{sin(B + C)sin(B - C)}{ {sin}^{2}A }

\rm \:  \:  =  \:  \: \dfrac{sin(\pi \:  -  \: A)sin(B - C)}{ {sin}^{2}A }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \because \blue{ \bf \: A + B + C = \pi \}}}

\rm \:  \:  =  \:  \: \dfrac{sin(A)sin(B - C)}{ {sin}^{2}A }

\rm \:  \:  =  \:  \: \dfrac{sin(B - C)}{sinA}

Additional Information :-

Cosine Law :-

In triangle ABC, if a, b and c represents the sides BC, CA and AB respectively, then

 \boxed{ \purple{ \sf \: cosA = \dfrac{ {b}^{2} +  {c}^{2} -  {a}^{2}}{2bc}}}

 \boxed{ \purple{ \sf \: cosB = \dfrac{ {c}^{2} +  {a}^{2} -  {b}^{2}}{2ac}}}

 \boxed{ \purple{ \sf \: cosC = \dfrac{ {a}^{2} +  {b}^{2} -  {c}^{2}}{2ab}}}

Projection Formulas :-

 \boxed{ \purple{\sf \: \:  \: a \:  =  \: b \: cosC \: +  \: c \: cosB}}

 \boxed{ \purple{\sf \: \:  \: b \:  =  \: c \: cosA \: +  \: a \: cosC}}

 \boxed{ \purple{\sf \: \:  \: c \:  =  \: a \: cos B\: +  \: b \: cosA}}

Similar questions