In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.
Answers
━━━━━━━━━━━━━━━━━━━━━━━━━
In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.
━━━━━━━━━━━━━━━━━━━━━━━━━
➡️In any triangle ABC,
➡️a/sin A = b/sin B = c/sin C = k
➡️a = k sin A, b = k sin B, c = k sin C
✴➡️LHS
➡️= a sin (B – C) + b sin (C – A) + c sin (A – B)
➡️= k sin A [sin B cos C – cos B sin C] + k sin B [sin C cos A – cos C sin A] + k sin C [sin A cos B
– cos A sin B]
➡️= k sin A sin B cos C – k sin A cos B sin C + k sin B sin C cos A – k sin B cos C sin A + k sin C sin A cos B – k sin C cos A sin B
➡️= 0
➡️= RHS
➡️Hence proved that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.
━━━━━━━━━━━━━━━━━━━━━━━━━
Answer:
⏩ SOLUTION:-
➡️In any triangle ABC,
➡️a/sin A = b/sin B = c/sin C = k
➡️a = k sin A, b = k sin B, c = k sin C
✴➡️LHS
➡️= a sin (B – C) + b sin (C – A) + c sin (A – B)
➡️= k sin A [sin B cos C – cos B sin C] + k sin B [sin C cos A – cos C sin A] + k sin C [sin A cos B
– cos A sin B]
➡️= k sin A sin B cos C – k sin A cos B sin C + k sin B sin C cos A – k sin B cos C sin A + k sin C sin A cos B – k sin C cos A sin B
➡️= 0
➡️= RHS
➡️Hence proved that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.✔
Step-by-step explanation: