Math, asked by AnanyaBaalveer, 1 day ago

In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.

◼️No copied from websites
◼️Be Brainly
◼️Thanks for your answer

Answers

Answered by talpadadilip417
16

Step-by-step explanation:

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

  \begin{aligned} \rm L.H.S.& \rm=a \cos A+b \cos B+c \cos C \\ \\  & \rm=K \sin A \cos A+K \sin B \cos B+K \sin C \cos C \\  \\ & \rm=\frac{K}{2}[\sin 2 A+\sin 2 B+\sin 2 C] \\  \\ & \rm =\frac{K}{2}[2 \sin (A+B) \cos (A-B)+\sin 2 C] \\  \\ & \rm=\frac{K}{2}[2 \sin C \cos (A-B)+2 \sin C \cos C] \\ \\  & \rm=K \sin C[\cos (A-B)+\cos C] \\  \\ & \rm=K \sin C\left[\cos (A-B)+\cos \left(180^{\circ}-(A+B)\right]\right.\\  \\ & \rm=K \sin C[\cos (A-B)-\cos (A+B)] \\  \\ & \rm=K \sin C[-2 \sin A \sin B] \\  \\ & \rm=2 K \sin A \sin B \sin C \\ \\  & \boxed{\color{olive}  \rm=2 a \sin B \sin C  } \rm\qquad\qquad (\because \:  \:  K \sin A = a\:) \\ \\  & \rm=R . H . S . \end{aligned}

Answered by s1271sreeja4825
0

Answer:

L.H.S.

=acosA+bcosB+ccosC

=KsinAcosA+KsinBcosB+KsinCcosC

=

2

K

[sin2A+sin2B+sin2C]

=

2

K

[2sin(A+B)cos(A−B)+sin2C]

=

2

K

[2sinCcos(A−B)+2sinCcosC]

=KsinC[cos(A−B)+cosC]

=KsinC[cos(A−B)+cos(180

−(A+B)]

=KsinC[cos(A−B)−cos(A+B)]

=KsinC[−2sinAsinB]

=2KsinAsinBsinC

=2asinBsinC

(∵KsinA=a)

=R.H.S.

hope this helps you please mark me as brainliest

l request you

Similar questions