In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.
Answers
Answer:
i am class five so i can't answer
Given :-
A triangle ABC
Required To Prove :-
a sin (B-C) + b sin (C- A) + c sin (A-B) = 0
Proof :-
Given that
ABC is a triangle.
We know that
in a triangle sin A /a = sin B /b = sin C /c
Let sin A /a = sin B /b = sin C /c = k
sin A/ a = k => sin A = ak
sin B / b = k => sin B = bk
sin C/ c = k => sin C = ck
Now,
sin(B-C) = sin B cos C - cos B sin C
=> sin (B-C) = bk . cos C - cos B .ck-----(1)
sin (C- A) = sin C cos A - cos C sin A
=> sin (C -A) = ck . cos A - cos C . ak ---(2)
sin (A-B) = sin A cos B - cos A sin B
=> sin (A-B) = ak. cos B - cos A . bk-----(3)
On adding (1),(2)&(3)
a sin (B-C)+ b sin (C- A) + c sin (A-B)
= a(bk . cos C - cos B .ck)+b(ck . cos A - cos C . ak)+ c( ak. cos B - cos A . bk)
= abk. cos C - ack .cos B + bck. cos A - abk. cos C + ack. cos B - bck. cos A
= (abk.cos C -abk.cos C)+(ack.cos B - ack.cos B)+( bck. cos A - bck. cos A)
= 0+0+0
= 0
Therefore,
a sin(B-C) +b sin (C- A)+c sin (A-B) = 0
Hence, Proved.