Math, asked by basitaktk3981, 1 year ago

In any triangle ABC prove that a(SinB-SinC)+ b(SinC-SinA)+ c(SinA-SinB)=0

Answers

Answered by gokuldas439
107
a(sinB-sinC)+b(sinC-sinA)+c(sinA - sinB) = 0
-------------------------
sin A/a = sin B/b = sin C/c = k ........... sine rule triangle
==============
LHS = a(sinB-sinC)+b(sinC-sinA)+c(sinA - sinB)
= a (kb - ck)+b (ck - ak)+c (ak - bk)
= k[ab - ac + bc - ab + c a - bc]
= k[0]
= 0
= RHS

gokuldas439: I have done It.......
Answered by syashu31
26

Answer:

Step-by-step explanation:

a(sinB-sinC)+b(sinC-sinA)+c(sinA - sinB) = 0

-------------------------

sin A/a = sin B/b = sin C/c = k ........... sine rule triangle

==============

LHS = a(sinB-sinC)+b(sinC-sinA)+c(sinA - sinB)

= a (kb - ck)+b (ck - ak)+c (ak - bk)

= k[ab - ac + bc - ab + c a - bc]

= k[0]

= 0

= RHS

Read more on Brainly.in - https://brainly.in/question/2929873#readmore

Similar questions