In any triangle ABC prove that a(SinB-SinC)+ b(SinC-SinA)+ c(SinA-SinB)=0
Answers
Answered by
107
a(sinB-sinC)+b(sinC-sinA)+c(sinA - sinB) = 0
-------------------------
sin A/a = sin B/b = sin C/c = k ........... sine rule triangle
==============
LHS = a(sinB-sinC)+b(sinC-sinA)+c(sinA - sinB)
= a (kb - ck)+b (ck - ak)+c (ak - bk)
= k[ab - ac + bc - ab + c a - bc]
= k[0]
= 0
= RHS
-------------------------
sin A/a = sin B/b = sin C/c = k ........... sine rule triangle
==============
LHS = a(sinB-sinC)+b(sinC-sinA)+c(sinA - sinB)
= a (kb - ck)+b (ck - ak)+c (ak - bk)
= k[ab - ac + bc - ab + c a - bc]
= k[0]
= 0
= RHS
gokuldas439:
I have done It.......
Answered by
26
Answer:
Step-by-step explanation:
a(sinB-sinC)+b(sinC-sinA)+c(sinA - sinB) = 0
-------------------------
sin A/a = sin B/b = sin C/c = k ........... sine rule triangle
==============
LHS = a(sinB-sinC)+b(sinC-sinA)+c(sinA - sinB)
= a (kb - ck)+b (ck - ak)+c (ak - bk)
= k[ab - ac + bc - ab + c a - bc]
= k[0]
= 0
= RHS
Read more on Brainly.in - https://brainly.in/question/2929873#readmore
Similar questions