In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
(vii)
(viii)
(ix)
Answers
SOLUTION
(vii) Given : Cos θ = 7/25
Cos θ = 7/25 = Base/Hypotenuse
In right ∆ ABC ,
Base (AB) = 7
Hypotenuse (AC) = 25
By using Pythagoras theorem,
AC² = AB² + BC²
25² = 7² + BC²
625 = 49 + BC²
BC² = 625 - 49
BC² = 576
BC = √576
BC = 24
Hence, Perpendicular side (BC) = 24
Now, sin θ = Perpendicular/ Hypotenuse
sin A = 24/25
cosec θ = Hypotenuse/Perpendicular
cosec θ = 25/24
sec θ = Hypotenuse / Base
sec θ = 25/7
tan θ = Perpendicular /Base
tan θ = 24/7
cot θ = Base/ Perpendicular
cot θ= 7/24
(viii)
Given : tan θ = 8/15
tan θ = 8/15 = Perpendicular /Base
In right ∆ ABC ,
Perpendicular (BC) = 8
Base (AB) = 15
By using Pythagoras theorem,
AC² = AB² + BC²
AC² = 15² + 8²
AC² = 225 + 64
AC² = 289
AC = √289 = 17
AC = 17
Hence, Hypotenuse (AC) = 17
Now, sin θ = Perpendicular/ Hypotenuse
sin θ = 8/17
cos θ = base/Hypotenuse
cos θ = 15/17
cosec θ = Hypotenuse/Perpendicular
cosec θ = 17/8
sec θ = Hypotenuse / Base
sec θ = 17/15
cot θ = Base/ Perpendicular
cot θ = 15/8
(ix) Given : cot θ = 12/5
cot θ = 12/5 = Base/ Perpendicular
In right ∆ ABC ,
Perpendicular (BC) = 5
Base (AB) = 12
By using Pythagoras theorem,
AC² = AB² + BC²
AC² = 12² + 5²
AC² = 144 + 25
AC² = 169
AC = √169
AC = 13
Hence, Hypotenuse (AC) = 13
Now, sin θ = Perpendicular/ Hypotenuse
sin θ = 5/13
cos θ = base/Hypotenuse
cos θ = 12/13
cosec θ = Hypotenuse/Perpendicular
cosec θ = 13/5
sec θ = Hypotenuse / Base
sec θ = 13/12
tan θ = perpendicular/base
tan θ = 5/12
HOPE THIS ANSWER WILL HELP YOU...