In Fig.10.15 , the angle BAC is a right angle and AD is perpendicular to BC, AB=4cm, AC=3cm, and BD =x . Calculate x. l want to know the value of x.
Answers
Answered by
26
Given:-
- ∠BAC = 90°
- AD ⊥ BC
- AB = 4cm
- AC = 3cm
- BD = x cm
To Find:-
- The value of x
Solution:-
Let DC = y cm.
✏ In triangle ABD,
AB² = AD² + BD² ㅤㅤ[By Pythagoras Theorem]
(4cm)² = AD² + (xcm)²
AD² = (4)² - (x)²
AD² = 16 - x² ㅤㅤㅤㅤ.......eq.(1)
✏ In triangle ABC,
AC² = AD² + DC² ㅤㅤ[By Pythagoras Theorem]
(3)² = AD² + y²
AD² = (3)² - (y)²
AD² = 9 - y² ㅤㅤㅤㅤ.......eq.(2)
✏ From eq.(1) and eq.(2),
AD² = AD²ㅤㅤ[By Pythagoras Theorem]
16 - x² = 9 - y²
16-9 = -y² + x²
7 = x² - y² ㅤㅤㅤㅤ.......eq.(3)
✏ In triangle ABC,
BC² = AB² + AC²ㅤㅤ[By Pythagoras Theorem]
(x+y)² = (4)² + (3)²
(x+y)² = 25
(x+y)² = 25
x+y = √25
x+y = 5 ㅤㅤㅤㅤ.......eq.(4)
✏ From eq.(3),
7 = x² - y²
7 = (x+y)(x-y)
7 = 5(x-y) ㅤㅤㅤㅤ[from eq.(4)]
(x-y) = 7/5ㅤㅤㅤㅤ.......eq.(5)
✏ Solving eq.(4) and eq.(5),
x + y + (x-y) = 5 + (7/5)
2x = 5 + 7/5
2x = 32/5
Attachments:
Similar questions