Math, asked by vamsi8280485878, 4 months ago

In Fig. 10.39, A, B, C and D are four points on a
circle. AC and BD intersect at a point E such
that Z BEC = 130° and ECD = 20°. Find
2 ВАС.​

Answers

Answered by Sankalp050
7

Answer:

Where's the figure buddy?

Step-by-step explanation:

वन्दे मातरम्। सुजलाम् सुफलाम् मलयजशीतलाम् शस्यश्यामला मातरम्। वन्दे मातरम्। शुभ्रज्योत्स्नाम् पुलकितयामिनीम् फुल्लकुसुमित द्रुमदलशोभिनीम् सुहासिनीम् सुमधुर भाषिणीम् सुखदाम् वरदाम् मातरम्।। वन्दे मातरम्।

Answered by Anonymous
86

Step-by-step explanation:

Given :

  • A, B, C and D are four points on a circle.

  • AC and BD intersect at a point E such that BEC = 130° and ECD = 20°.

To Find :

  • Find the value of 2 ВАС.

Solution :

According to the Diagram :

∠BEC + ∠DEC = 180°                (Linear Pair)

➪ ∠130° + ∠DEC = 180°

➪ ∠DEC = 180°−130°

➪ ∠DEC = 50°            

We know that the sum of the three angles of a triangle is 180°

Then ,

∠DEC + ∠DCE + ∠BDC = 180°

  • Substitute all values :

➪ 50° + 20° + ∠BDC = 180°

➪ 70° + ∠BDC = 180°

➪ ∠BDC = 180° - 70

➪ ∠BDC = 110°

We have ∠BDC = ∠BAC

∠BAC=110°

  • Hence the ∠BAC=110°
Attachments:
Similar questions