Math, asked by bilalahkhan1117, 1 month ago

In Fig. 67, chords PQ and PS are equidistant from the centre O. R is a point such that RQ is perpendicular to PQ and RS is
perpendicular to PS. Prove that angle PRS and angle PRQ are equal.​

Attachments:

Answers

Answered by DeeznutzUwU
1

       \underline{\bold{Given:}}

       PQ\text{ and }PS \text{ are equidistant from center }O

       \angle{PQR} = \angle{PSR} = 90^{o}

       \underline{\bold{To-Prove:}}

       \angle{PRS} = \angle{PRQ}

       \underline{\bold{Proof:}}

       \text{We know that, chords that are equidistant from the center are equal}

\implies PQ = PS

       \text{In }\triangle{PSR}\text{ and }\triangle{PQR}

       \angle{PSR} = \angle{PQR} = 90^{o} \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(\text{Given})

       PR = PR \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(\text{Common})

       PQ = PS \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(\text{Equidistant chords})

\implies \text{By RHS rule of congruency }\triangle{PSR} \cong \triangle{PQR}

\implies \angle{PRS} = \angle{PRQ} \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(\triangle{PSR}\cong\triangle{PQR})

       \text{Hence Proved}

Attachments:
Similar questions