Math, asked by amulya18101, 11 months ago

in fig ABC and AMP are two right triangl , right triangle angled at B and M respectively ​prove that triangle ABC is similar to triangle AMP

Attachments:

Answers

Answered by chitracharan15
7

Answer:

it's the right answer.

Hope it helps you.

Plz mark as brainliest plz.

Attachments:
Answered by Anonymous
12

\bold{\huge{\underline{\underline{\rm{ Given :}}}}}

ABC and AMP are right triangles at B and M respectively

\bold{\huge{\underline{\underline{\rm{ To</strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong> </strong><strong>\</strong><strong>:</strong><strong> </strong><strong> </strong><strong>prove</strong><strong>:}}}}}

(i) in \triangle ABC and \triangle AMP

(ii) \frac{</p><p>CA }{</p><p> PA}  =  \frac{BC }{MP}

\bold{\huge{\underline{\underline{\rm{ proof :}}}}}

In∆ ABC and ∆ AMP

 \angle </p><p>BAC  =  \angle MAP  - common

 \angle</p><p>ABC =   \angle AMP - 90°</p><p> (given)

 \therefore \triangle ABC  \sim \triangle  AMP

....by AA

(ii)  \frac{CA }{PA}  =  \frac{BC }{MP} .... ( corresponding parts of similar∆ triangle)

Similar questions