Math, asked by gnaneshwarvemulached, 11 months ago

In fig,ABC is a quadrant of r=14cm
and a semicircle is drawn with BC as diameter.
Find the area of YELLOW region​

Attachments:

Answers

Answered by zap69077
0

Ar. Of yellow region=(π(✓2r)^2)/2-(πr^2/2-r^2/2)

=πr^2-πr^2/2+ r^2/2

=(πr^2-r^2)/2

=(22*14*14/7-14*14)/2

=420/2

=210cm^2

Answered by sanketj
0

In ∆BAC, AB _|_ AC

AB = AC = 14 cm (radii of same circle)

tanC =AB/AC = 14/14 = 1

tanC = 1 = tan45°

angle ACB = 45°

sinC = sin45° = AB/BC

 \frac{1}{ \sqrt{2} }  =  \frac{14}{ac }

AC = 14√2 cm

for smaller circle;

r = 14 cm

ar(quadrant)  \\  =  \frac{1}{4} \pi \:  {r}^{2}  \\  =  \frac{1}{4}   \times  \frac{22}{7}  \times 14 \times 14 \\  =  \frac{1}{2} \times 22 \times 2 \times 7 = 1 \times 22 \times 7 \\  = 154 \:  {cm}^{2}

for bigger circle;

r = 14√3 cm

ar(semicircle) \\  =  \frac{1}{2}  \times \pi \:  {r}^{2}  \\  =  \frac{1}{2}  \times  \frac{22}{7} \times 14 \sqrt{3}   \times 14 \sqrt{3}  \\  = 1 \times 11 \times 2 \sqrt{3}  \times 14 \sqrt{3}  \\  = 11 \times 28 \times 3 \\  = 11 \times 84 \\  = 924 \:  {cm}^{2}

for BAC;

ar(∆)

= 1/2 x AB x AC

= 1/2 x 14 x 14

= 98 cm²

ar(shaded portion)

= ar(triangle) + ar(semicircle) - ar(quadrant)

= 98 + 924 - 154

= 868 cm²

Hence, area of shaded portion 868 cm²

Similar questions