In fig. ABCD is a parallelogram. Find the value of x and y.
Answers
In fig. ABCD is a parallelogram. Find the value of x and y.
⨳ value of x = 45
⨳ value of y =30
∠ A - ( 3x - 10 ) °
∠ C - ( x + 80 ) °
∠ D - ( y + 25 ) °
Value of x and y
∠ A = ∠ C [ † opposite angles of parallelogram are equal ]
↝ ( 3x - 10 ) ° = ( x + 80 ) °
↝ 3x - x = 80 + 10
↝ 2x = 90
↝ x = 90/2
↝ x = 45
So , the value of x is 45
___________________________
∠ A + ∠ D = 180 ° [ † sum of adjacent angles of parallelogram is 180° ]
↝ ( 3x - 10 ) ° + ( y + 25 ) ° = 180 °
↝ ( 3 × 45 - 10 ) + ( y + 25 ) = 180
↝ 125 + y + 25 = 180 °
↝ y = 180 - 125 - 25
↝ y = 30
So , the value of y is 30
........ ✍️
↝∠ A = 3 × ( 45 ) - 10 = 125 °
↝∠ C = ( 45 ) + 80 = 125 °
↝∠ D = ( 30 ) + 25 = 55 °
↝∠ B = ∠ D = 55 ° [ † opposite angles of parallelogram are equal]
★ ∠ A + ∠ B + ∠ C + ∠ D = 360°
↝ 125 ° + 125 ° + 55 ° + 55 ° = 360 °
↝ 250 ° + 110 ° = 360 °
↝360 ° = 360 °
hence it is correct !
Answer:
x = 45
y = 30
..........,.....✍️