In fig., if lines PQ and RS intersect at point T, such that angle PRT =40degrees, angle RPT=95degrees and angle TSQ=75degrees, find angle SQT.
Attachments:
Answers
Answered by
77
ang. ptr=180-(ang.prt+ ang. rpt)
=180-(40+95)
=180-135
=45
ang.ptr=ang.stq. ( vertically opposite angle)
ang sqt=180-(ang.stq+ang.tsq)
=180-(45+75)
=180-120
=60 (answer)
=180-(40+95)
=180-135
=45
ang.ptr=ang.stq. ( vertically opposite angle)
ang sqt=180-(ang.stq+ang.tsq)
=180-(45+75)
=180-120
=60 (answer)
shreya15114:
tysm
Answered by
58
Hello mate ☺
____________________________
Solution:
In ∆PRT, we have
∠PRT+∠RPT+∠RTP=180° (Sum of three angles of a triangle =180°)
⇒40°+95°+∠RTP=180°
⇒∠RTP=180°−40°−95°=45°
∠RTP=∠QTS (Vertically Opposite Angles)
Therefore, ∠QTS is also equal to 45°
In ∆STQ, we have
∠SQT+∠TSQ+∠QTS=180° (Sum of three angles of a triangle =180°)
⇒∠SQT+75°+45°=180°
⇒∠SQT=180°−75°−45°=60°
I hope, this will help you.☺
Thank you______❤
_____________________________❤
Similar questions