Math, asked by adityakhatri999, 1 year ago

in fig POQ is a line . Ray OR is perpendicular to line PQ . OS is another ray lying between rays OP and OR . prove that angle ROS =1/2 (angle QOS-angle POS)

Answers

Answered by Anonymous
23
hope it helps.......

☺️☺️☺️☺️☺️☺️☺️
Attachments:
Answered by Anonymous
10

<b>☺ Hello mate__ ❤

◾◾here is your answer...

Given:   OR is perpendicular to PQ

OR and OS are rays to PQ

To prove:    ∠ROS=1/2(∠QOS−∠POS)

Proof:  ∠ROQ+∠ROP=180°       (Linear pair)

⇒∠ROP=180°−∠ROQ=180°−90°=90°

R.H.S =1/2(∠QOS−∠POS)

=1/2(180°−∠POS−∠POS)                               (∠POS+∠QOS=180°)   (Linear pair)

=1/2(180°−2∠POS)          ...........eq  (1)

We have ∠POS=∠ROP−∠ROS=90°−∠ROS, putting this in eq(1), we get

R.H.S =1/2(180°−2(90°−∠ROS))

=1/2(180°−180°+2∠ROS)=1/2(2∠ROS)

=∠ROS

Therefore, L.H.S=R.H.S

Hence proved.

I hope, this will help you.

Thank you______❤

✿┅═══❁✿ Be Brainly✿❁═══┅✿

Similar questions