Math, asked by suryansh6211, 1 year ago

In fig ,the side qr of tiangle pqr is produced s .If the bisectors of angle pqr and angle prs meet at point t,then prove that angle qtr=1/2 angleqpr

Answers

Answered by anmol123456
2
Answer of your question
Hence solved
Attachments:
Answered by Anonymous
5

Hello mate ☺

____________________________

Solution:

∠PQT=∠TQR               (Given)

∠PRT=∠TRS               (Given)

To Prove:  ∠QTR=1/2(∠QPR)

∠PRS=∠QPR+∠PQR

(If a side of a triangle is produced, then the exterior angle is equal to the sum of two interior opposite angles.)

⇒∠QPR=∠PRS−∠PQR

⇒∠QPR=2∠TRS−2∠TQR

⇒∠QPR=2(∠TRS−∠TQR)

=2(∠TQR+∠QTR−∠TQR)                          (∠TRS=∠TQR+∠QTR)

(If a side of a triangle is produced, then the exterior angle is equal to the sum of two interior opposite angles.)

⇒∠QPR=2(∠QTR)

⇒∠QTR=1/2(∠QPR)

Hence Proved

I hope, this will help you.☺

Thank you______❤

_____________________________❤

Attachments:
Similar questions