In fig. Xp/py=xq/qz=3,if the area of triangle xyz is 32cm square ,then find the area of the quadrilateral pyzq.
Answers
Answered by
74
Xp/py=xq/qz=3,------------> A
pq||yz
Taking reciprocals of eq A
py/xp=qz/xq=1/3
py/xp+1=qz/xq+1=1/3+1
py+xp/xp=qz+xq/xq=4/3
xy/xp=xq/xz=4/3 --------B
again taking reciprocals of above term,
xp/xy=xz/xq=3/4
triangle(xpq)/triangle(xyz)=(xp/xy)^2=9/16
trianlge xpq=9/16*triangle (xyz)
triangle (xyz)=32cm
triangle(xpq)=18 square cm
Quad(pyzq)=triangle(xyz)-triangle(xpq)
=32-18=14 square cm. Answer
visauma71:
Your answer is the brainliest.
Answered by
0
Answer:
Let x/a = y/b = z/c = k, [By k method]
x = ak, y= bk and z=ck
L.H.S. = a3k3/a2 + b3k3/b2 + c3k3/c2 > k3[a + b + c]
R.H.S. = [ak + bk + ck]3/[a + b + c)2 → k3[a + b + c]3/[a + b + c)2
= k3(a + b + c)
L.H.S. = R.H.S. =
Hence proved.
Similar questions