① In figure 3, if ∠POY = 900
and a : b = 2 : 3, then find the value of c.
Answers
Given :–
- ∠POY = 90°
- a:b = 2:3
To Find :–
- Value of c.
Solution :–
Let, a = 2x and b = 3x
So First, we need to find the value of x.
So,
⟹ ∠POX + ∠POY = 180°
Where,
• ∠POX = a + b = 2x + 3x
So,
⟹ a + b + ∠POY = 180° [Linear Pair]
⟹ 2x + 3x + 90° = 180°
⟹ 5x + 90° = 180°
⟹ 5x = 180° – 90°
⟹ 5x = 90°
⟹ x =
⟹ x = 18°
So,
- a = 2x = 2 × 18° = 36°
- b = 3x = 3 × 18° = 54°
Now, we need to find the value of c.
Here, MN is a line, so we can use as a linear pair.
So,
⟹ ∠MOX + ∠XON = 180° [Linear Pair]
- ∠MOX = b = 54°
- ∠XON = c
⟹ b + c = 180°
⟹ 54° + c = 180°
⟹ c = 180° – 54°
⟹ c = 126°
Hence,
The value of c is 126°.
Step-by-step explanation:
Given :–
∠POY = 90°
a:b = 2:3
To Find :–
Value of c.
Solution :–
Let, a = 2x and b = 3x
So First, we need to find the value of x.
So,
⟹ ∠POX + ∠POY = 180°
Where,
• ∠POX = a + b = 2x + 3x
So,
⟹ a + b + ∠POY = 180° [Linear Pair]
⟹ 2x + 3x + 90° = 180°
⟹ 5x + 90° = 180°
⟹ 5x = 180° – 90°
⟹ 5x = 90°
⟹ x = \dfrac{\cancel{90}}{\cancel5}
5
90
⟹ x = 18°
So,
a = 2x = 2 × 18° = 36°
b = 3x = 3 × 18° = 54°
Now, we need to find the value of c.
Here, MN is a line, so we can use as a linear pair.
So,
⟹ ∠MOX + ∠XON = 180° [Linear Pair]
∠MOX = b = 54°
∠XON = c
⟹ b + c = 180°
⟹ 54° + c = 180°
⟹ c = 180° – 54°
⟹ c = 126°
Hence,
The value of c is 126°.