Math, asked by nihal69801, 1 month ago

In figure if AE || DC and AB = AC, find the value of ∠ABD

Answers

Answered by Anonymous
35

Given :

AE || DC and AB = AC

To find :

 the value of ∠ABD

 

Solution :  

From figure we have, ∠EAF  = 70°

 

 \rm  : \implies\: ∠EAF = ∠BCA  \: [Corresponding angles]</p><p>

\\

 \rm  : \implies\: ∠BCA = 70° ……………(1)

\\

 \rm \bf \: We  \: have, AB = AC, then

\\

 \rm  : \implies\: ∠CBA = ∠BCA [Angles \:  opposite  \: to  \: equal \:  sides  \: are  \: equal]

\\

 \rm : \implies \: ∠CBA = 70°

\\

 \rm \: [From  \: eq \:  1]</p><p>

\\

Now,

\\

 \rm  : \implies ∠ABD + ∠CBA = 180° [Linear \:  pair] \:

\\

 \rm : \implies ∠ABD + 70° = 180°

\\

 \rm : \implies∠ABD = 180° - 70°

\\

 \rm : \implies∠ABD = 110 \degree

\\

Hence , the value of ∠ABD is 110°.

Attachments:
Answered by llxxkrithikaxxll
27

ANSWER

_____________

It is given that

<MAE = 70°

ZNAC 70°(Vertically apposite

angle)

Now ZMAE + ZEAB + <BAC =180°

(linear pair)....

(1)

Similarly LEAB +<BAC +ZNAC = 180° (linear pair) . (2)

From equation (1) we have

ZEAB + <BAC = 180°

= 110°

Now <FCA = <DBA (same exterior angle)

ZACF = LEAC (Interior angle)

Now

ZEAC = 110°

So ZAFC 110°

Since ZAFC =<ABD

Hence (b)ZABD = 110°.

llXxKrithikaxXll

Attachments:
Similar questions