Math, asked by madhavi4460, 1 year ago

In figure, if lines PQ and RS intersect at point T, such that angle PRT=45°,angle RPT=95° and Angle TSQ=75°, find angle SQT​

Answers

Answered by ankita5786
2

Answer:

here is the answer of ur question

Attachments:
Answered by Anonymous
3

GIVEN:-

\large\sf{PQ||SR}

\large\sf{\angle{PRT}=40°}

\large\sf{\angle{RPT}=95°}

━━━━━━━━━━━━━━━

\implies\large\sf{\angle{PRT}+\angle{RTP}+\angle{TPR}=180°}

\implies\large\sf{40°+\angle{RTP}+95°=180°}

\implies\large\sf{\angle{RTP}+135°=180°}

\implies\large\sf{\angle{RTP}=180°-135°}

\implies\large\sf{\angle{RTP}=45°}

━━━━━━━━━━━━━━━

\large\sf{\angle{PRT}=\angle{TSQ}(V.O.A)}

\therefore\large\sf{\angle{PRT}=45°}

\large\sf{Then,\angle{TSQ}=45°}

━━━━━━━━━━━━━━━

\huge\sf\red{In\:∆TSQ,}

\implies\large\sf{\angle{SQT}+\angle{TSQ}+\angle{STQ}=180°}

\implies\large\sf{45°+75°+\angle{STQ}=180°}

\implies\large\sf{\angle{STQ}+120°=180°}

\implies\large\sf{\angle{STQ}=60°}

Similar questions