In figure it is given that AB=BC and AD=EC prove that
Answers
Answered by
3
In ΔABC,
AB = BC (given)
⇒ ∠BCA = ∠BAC .(Angles op-posite to eq-ual sides are eq-ual)
⇒ ∠BCD = ∠BAE ….(i)
Given, AD = EC
⇒ AD + DE = EC + DE .(Ad-ding DE on both sides)
⇒ AE = CD ..(ii)
Now, in triangl-es ABE and CBD,
AB = BC ..(given)
∠BAE = ∠BCD ....[From (i)]
AE = CD ..[From (ii)]
⇒ ΔABE ≅ ΔCBD
⇒ BE = BD ..(cpct)
Attachments:
Answered by
5
In ΔABC,
AB = BC (given)
⇒ ∠BCA = ∠BAC .(Angles op-posite to eq-ual sides are eq-ual)
⇒ ∠BCD = ∠BAE ….(i)
Given, AD = EC
⇒ AD + DE = EC + DE .(Ad-ding DE on both sides)
⇒ AE = CD ..(ii)
Now, in triangl-es ABE and CBD,
AB = BC ..(given)
∠BAE = ∠BCD ....[From (i)]
AE = CD ..[From (ii)]
⇒ ΔABE ≅ ΔCBD
⇒ BE = BD ..(cpct)
Similar questions