Math, asked by joyfulcricketer, 1 year ago

in figure, O is the centre of the circle and AB is the chord. If OD perpendicular on AB then find the radius.
AB = 6cm OD = 4cm

Attachments:

Answers

Answered by Golda
57
Solution :-

Given -

AB = 6 cm, OD = 4 cm and O is the center of the circle.

AB is a chord and OD is perpendicular to AB.

OA = Radius = ?

It is clear from the figure that AD = DB = 1/2 of AD

⇒ 1/2 × 6

⇒ AD = 3 cm

Now, using Pythagoras Theorem - 

⇒ (Hypotenuse)² = (Base)² + (Perpendicular)²

⇒ (OA)² = (AD) + (OD)²

⇒ (OA)² = (3)² + (4)²

⇒ (OA)² = 9 + 16

⇒ (OA)² = 25

⇒ OA = √25

⇒ OA = 5 cm

So, the radius of the circle is 5 cm

Answer.
Answered by dinny172002
10

Given -


AB = 6 cm, OD = 4 cm and O is the center of the circle.


AB is a chord and OD is perpendicular to AB.


OA = Radius = ?


It is clear from the figure that AD = DB = 1/2 of AD


⇒ 1/2 × 6


⇒ AD = 3 cm


Now, using Pythagoras Theorem - 


⇒ (Hypotenuse)² = (Base)² + (Perpendicular)²


⇒ (OA)² = (AD) + (OD)²


⇒ (OA)² = (3)² + (4)²


⇒ (OA)² = 9 + 16


⇒ (OA)² = 25


⇒ OA = √25


⇒ OA = 5 cm


So, the radius of the circle is 5 cm



Read more on Brainly.in - https://brainly.in/question/2205150#readmore

Similar questions