in figure, O is the centre of the circle and AB is the chord. If OD perpendicular on AB then find the radius.
AB = 6cm OD = 4cm
Attachments:
Answers
Answered by
57
Solution :-
Given -
AB = 6 cm, OD = 4 cm and O is the center of the circle.
AB is a chord and OD is perpendicular to AB.
OA = Radius = ?
It is clear from the figure that AD = DB = 1/2 of AD
⇒ 1/2 × 6
⇒ AD = 3 cm
Now, using Pythagoras Theorem -
⇒ (Hypotenuse)² = (Base)² + (Perpendicular)²
⇒ (OA)² = (AD) + (OD)²
⇒ (OA)² = (3)² + (4)²
⇒ (OA)² = 9 + 16
⇒ (OA)² = 25
⇒ OA = √25
⇒ OA = 5 cm
So, the radius of the circle is 5 cm
Answer.
Given -
AB = 6 cm, OD = 4 cm and O is the center of the circle.
AB is a chord and OD is perpendicular to AB.
OA = Radius = ?
It is clear from the figure that AD = DB = 1/2 of AD
⇒ 1/2 × 6
⇒ AD = 3 cm
Now, using Pythagoras Theorem -
⇒ (Hypotenuse)² = (Base)² + (Perpendicular)²
⇒ (OA)² = (AD) + (OD)²
⇒ (OA)² = (3)² + (4)²
⇒ (OA)² = 9 + 16
⇒ (OA)² = 25
⇒ OA = √25
⇒ OA = 5 cm
So, the radius of the circle is 5 cm
Answer.
Answered by
10
Given -
AB = 6 cm, OD = 4 cm and O is the center of the circle.
AB is a chord and OD is perpendicular to AB.
OA = Radius = ?
It is clear from the figure that AD = DB = 1/2 of AD
⇒ 1/2 × 6
⇒ AD = 3 cm
Now, using Pythagoras Theorem -
⇒ (Hypotenuse)² = (Base)² + (Perpendicular)²
⇒ (OA)² = (AD) + (OD)²
⇒ (OA)² = (3)² + (4)²
⇒ (OA)² = 9 + 16
⇒ (OA)² = 25
⇒ OA = √25
⇒ OA = 5 cm
So, the radius of the circle is 5 cm
Read more on Brainly.in - https://brainly.in/question/2205150#readmore
Similar questions