Math, asked by kushagrapokera, 1 year ago

In figure poq is a line. Ray or is perpendicular to line pq. Os is another ray lying between rays op and or. Prove that angle ros = 1\2(qos - pos)

Answers

Answered by aditikota
17

Here is your answer.....

Attachments:

kushagrapokera: Thanks
aditikota: You are welcome
kushagrapokera: Please send it again its not clear
Answered by Anonymous
13

<b>☺ Hello mate__ ❤

◾◾here is your answer...

Given:   OR is perpendicular to PQ

OR and OS are rays to PQ

To prove:    ∠ROS=1/2(∠QOS−∠POS)

Proof:  ∠ROQ+∠ROP=180°       (Linear pair)

⇒∠ROP=180°−∠ROQ=180°−90°=90°

R.H.S =1/2(∠QOS−∠POS)

=1/2(180°−∠POS−∠POS)                               (∠POS+∠QOS=180°)   (Linear pair)

=1/2(180°−2∠POS)          ...........eq  (1)

We have ∠POS=∠ROP−∠ROS=90°−∠ROS, putting this in eq(1), we get

R.H.S =1/2(180°−2(90°−∠ROS))

=1/2(180°−180°+2∠ROS)=1/2(2∠ROS)

=∠ROS

Therefore, L.H.S=R.H.S

Hence proved.

I hope, this will help you.

Thank you______❤

✿┅═══❁✿ Be Brainly✿❁═══┅✿

Similar questions