Math, asked by muskaangul2005, 5 months ago

In figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD

Answers

Answered by rahulsn07
2

Step-by-step explanation:

saw this image and got your answer

Attachments:
Answered by CommanderBrainly
2

Step-by-step explanation:

{\huge{\boxed{\sf{\pink{☞Answe࿐★}}}}}

PQ || RS ⇒ BL || CM

[∵ BL || PQ and CM || RS]

Now, BL || CM and BC is a transversal.

∴ ∠LBC = ∠MCB …(1) [Alternate interior angles]

Since, angle of incidence = Angle of reflection

∠ABL = ∠LBC and ∠MCB = ∠MCD

⇒ ∠ABL = ∠MCD …(2) [By (1)]

Adding (1) and (2), we get

∠LBC + ∠ABL = ∠MCB + ∠MCD

⇒ ∠ABC = ∠BCD

i. e., a pair of alternate interior angles are equal.

∴ AB || CD.

\displaystyle{\implies\underline{\boxed{\red{\sf\:ab \: ll \: cd}}}}⟹

Similar questions