Math, asked by duttasumita112, 8 months ago

In figure, what value of y will make POQ a straight line?​

Attachments:

Answers

Answered by chaityasalot10
6

Answer:

The answer is 40

Step-by-step explanation:

2y-25+3y+5=180 degree(linear pair)

5y-20=180

5y=180+20

5y=200

y=200/5

Therefore y=40

Answered by Anonymous
37

Given:-

  • \rm{\angle{ROP} =( 2y - 25^{\circ})}

  • \rm{\angle{ROQ} = ( 3y + 5^{\circ})}

To Find:-

  • The Value of y.

Concept Used:-

  • In a straight line sum of all the angles is equal to 180°.

Now,

\implies\rm{ \angle{ROP} + \angle{ROQ} = 180^{\circ}}

\implies\rm{ (2y - 25) + (3y + 5) = 180}

\implies\rm{ 5y - 20 = 180}

\implies\rm{ 5y = 180 + 20}

\implies\rm{ 5y = 200}

\implies\rm{ y = \dfrac{\cancel{200}}{\cancel{5}}}

\implies\rm{ y = 40^{\circ}}.

Hence, The Value of y is 40°.

So,

\implies\sf{ \angle{POR} = (2y - 25) = 55^{\circ}}

\implies\sf{\angle{ROQ} = (3y + 5) = 125^{\circ}}.

Similar questions