Math, asked by santosh23, 1 year ago

in G.P the sum of three number is 13. and the the sum of square of those three number is 91.then find the those numbers of GP

Answers

Answered by AkashMandal
4
Let the 3 terms of G.P are a, ar, ar2
Then according to question,
Sum of the given terms = 13⇒ a + ar + ar2 = 13
⇒ a (1 + r + r2) = 13
⇒ a = 131 + r + r2 ...............(1)


Also it is given that sum of the squares of the given numbers = 91⇒ a2 + a2r2 + a2r4 = 91
⇒ a2 (1 + r2 + r4) = 91
⇒ a2 (1 + r2 + r4 + r2 − r2) = 91
⇒ a2 {(1 + 2r2 + r4) − r2} = 91
⇒ a2 {(1 + r2)2 − r2} = 91
⇒ a2 {(1 + r2 + r) (1 + r2 − r)} = 91
⇒ a2 = 91(1 + r + r2) (1 − r + r2) ................(2)


Putting the value of a from (1) in (2)

⇒ (131 + r + r2 )2 = 91(1 + r + r2) (1 − r + r2)
⇒ 169(1 + r + r2 ) (1 + r + r2 ) = 91(1 + r + r2) (1 − r + r2)
⇒ 13(1 + r + r2 ) = 7(1 − r + r2)
⇒ 13 − 13r + 13r2 = 7 + 7r + 7r2
⇒ 6r2 − 20r + 6 = 0
⇒ 3r2 − 10r + 3 = 0
⇒ 3r2 − 9r − r + 3 = 0
⇒ 3r (r − 3) − 1 (r − 3) = 0
⇒(r − 3) (3r − 1) = 0


Either, r − 3 = 0 or 3r − 1 = 0Either, r = 3 or r= 13



CASE (i). When r = 3 Then a = 131 + 3 + 9 [putting r = 3 in (1)] a = 1313 = 1Then the required numbers are: a, ar, ar2 = 1, 1×3, 1×9 = 1, 3, 9



CASE(ii). When r = 13 Then a = 131 + 13 + 19 a = 13139 = 13 × 913 = 9Then the required numbers are: a, ar, ar2 = 9, 9 ×13, 9 ×19 = 9, 3, 1 ( ans)
Similar questions