Math, asked by HanikaYash, 11 months ago

In given figure, ABPC is a quadrant of a cirle of radius 14 cm and a semicircle is drawn with BC as diameter. Find the area of the shaded region.
please answer fast.​

Attachments:

Answers

Answered by Anonymous
40

 \huge{\boxed{\bf{\pink{Solution:-}}}}

 \sf \: Radius \: of \: the \: quadrant \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  =  \: 14 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (given)

 \sf \: In \: right \: triangle \: BAC,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: BC {}^{2}  =  AB {}^{2}  + AC {}^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf | \:  By \: Pythagoras \: Theorem

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \: (14) {}^{2}  + (14) {}^{2}

 \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:   \sf =  \: 196 + 196 = 196 \times 2

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: BC =  \:  \sqrt{196 \times 2}  \:  = \:  14 \sqrt{2}  \: cm

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: Radius \: of \: the \: semicircle =  \frac{Diameter}{2} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =   \: \frac{BC}{2} =  \frac{14 \sqrt{2} }{2} \: cm = 7 \sqrt{2} . \\

 \sf \:  \:  \:  \: Area \: of \: the \: shaded \: region

 \:  \:  \:  \:  \:  \sf = \:  Area \: of \: semi - circle \: on \: BC \: as \: diameter - Area \: of \:  \bf{segment} \sf \: BPC

 =   \sf\frac {1}{2}\pi(7 \sqrt{2} ) {}^{2}  -  [Area \: of \: quadrant \: ABPC - Area \: of  \: \triangle \: ABC] \\

 =  \sf \frac{1}{2}\pi \times 49 \times 2  -  \bigg [ \frac{1}{4}\pi(14) {}^{2} -  \frac{1}{2} \times AB \times AC \bigg ] \\

 =  \sf \frac{1}{2} \times  \frac{22}{7} \times 49 \times 2  -  \bigg [ \frac{1}{4} \times  \frac{22}{7} \times 14 \times 14 -  \frac{1}{2} \times 14 \times 14 \bigg] \\

 \sf = 22 \times 7 -  \bigg[ \frac{22 \times 2 \times 14}{4} - 7 \times 14  \bigg ] \\

 \sf = 154 - (154 - 98)

 =  \sf154 - 154 + 98 = 98  \: cm{}^{2}

Attachments:
Similar questions