in given figure angle x = 62 degree, angle XYZ is=54 degree. if YO and ZO are the bisectors of angle XZY and angle XYZ respectively of triangle XYZ. find angle OZY and YOZ.
Answers
Hello mate ☺
____________________________
Solution:
In ∆XYZ, we have
∠XYZ+∠XZY+∠X=180° (Sum of three angles of a triangle =180°)
⇒540+∠XZY+62°=180°
⇒∠XZY=180°−54°−62°=64°
It is given that OY and OZ are bisectors of ∠XYZ and ∠XZY respectively
Therefore, ∠OZY=1/2(∠XZY)
=1/2(64°)
=32°
Similarly, ∠OYZ=1/2(∠XYZ)
=1/2(54°)
=27
In ∆OYZ, we have
∠OYZ+∠OZY+∠YOZ=180° (Sum of three angles of a triangle =180°)
⇒27°+32°+∠YOZ=18°
⇒∠YOZ=180°−27°−32°=121°
Therefore, ∠OZY=32° and ∠YOZ=121°
I hope, this will help you.☺
Thank you______❤
_____________________________❤
Answer:
As the sum of all interior angles of a triangle is 180º, therefore, for ΔXYZ,
∠X + ∠XYZ + ∠XZY = 180º
62º + 54º + ∠XZY = 180º
∠XZY = 180º − 116º
∠XZY = 64º
∠OZY = 32º (OZ is the angle bisector of ∠XZY)
Similarly, ∠OYZ == 27º
Using angle sum property for ΔOYZ, we obtain
∠OYZ + ∠YOZ + ∠OZY = 180º
27º + ∠YOZ + 32º = 180º
∠YOZ = 180º − 59º
∠YOZ = 121º
Step-by-step explanation:
please add me as brainlist