Math, asked by kristikattepogu5017, 8 months ago

In how many months will rupess1020 amounts to 1037 at 5/2 simple intrest per annum

Answers

Answered by BrainlyConqueror0901
11

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Time=8\:months}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  Principal(p) = 1020 \: rupees \\  \\ \tt:  \implies Amount(A) = 1037 \: rupees \\  \\  \tt:  \implies Rate\%(r) =  \frac{5}{2} \% \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  Time(t) =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies A = p + S.I \\  \\ \tt:  \implies 1037 = 1020 + si \\  \\ \tt:  \implies S.I= 1037 - 1020 \\  \\  \green{\tt:  \implies S.I= 17 \: rupees} \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies S.I =  \frac{p \times r \times t}{100}  \\  \\ \tt:  \implies 17 =  \frac{1020 \times 5 \times t}{2 \times 100}  \\  \\ \tt:  \implies  \frac{17 \times 2 \times 100}{1020 \times 5}  = t \\  \\ \tt:  \implies t =  \frac{3400}{5100}   \times 12 \\  \\  \green{\tt:  \implies t = 8 \: months}

Answered by Anonymous
9

GIVEN :

☞Amount (A) = 1037 rupees

☞ Principle (P) = 1020 rupees

☞ Rate% (R%) = 5/2

To FIND:

☆Time (t)

Solution :

Amount = S.I + sum

1037 = S.I + 1020

1037 - 1020 = S.I

17 = S.I

So, we got S.I = 17 rupees.

Then,

S.I  =  \frac{P  \times R  \times t}{100}

=>17 =  \frac{1020 \times 5 \times t}{2 \times 100}

=>17 \times 200 = 5100 \times t

 =>\frac{3400}{5100}  = t

=> \frac{3400}{5100}  \times 12 = t

=>8 \: months \:  = t

Similar questions