Math, asked by 16022000, 1 year ago

in how many years will a sum double itself at the rate of 10% simple interest per annum?

Answers

Answered by hpkagr494
7

Answer:


Step-by-step explanation:

Let the initial sum be p.

Time = t years

r =10%.

Given,

Amount= 2p after t years.

SI= Amount - Principal = 2p-p = p

SI= prt/100

p=p*10*t/100

t=10 years.

Answered by TRISHNADEVI
11

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

  \huge{\underline{ \mathfrak{ \pink{ \:  \: Method \:  \:    \: 1 \:  : \mapsto \: }}}}

 \underline{ \mathfrak{ \: Given, \: }} \\  \\  \text{ \pink{A sum of money become double of itself}} \\  \text{ \pink{ at 10\% simple interest.}} \\  \\  \underline{ \mathfrak{ \:Suppose, \: }} \\  \\  \text{ \red{Rate of interest, r = 10\% }} \\  \\\text{ \red{ Principal = P }} \\  \\ \text{ \red{Amount, A = 2P}} \\  \\  \sf{ \blue{\therefore \:  Simple \:  \:  Interest  = Amount - Principal }} \\   \\ \sf{ \blue{\implies S.I. = 2P - P }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \blue{\therefore \:  S.I. = P}} \\  \\   \:  \:  \:  \: \text{ \red{No. of years = n}}

 \underline{ \mathfrak{ \:  \: We \:  \:  know \:  \:  that, \:  \: }} \\  \\  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \tt{S.I. = \frac{P \times 10 \times n}{100}} \\ \\   \tt{ \implies \:P =  \frac{P \times 10 \times n}{100}  } \\  \\ \tt{ \implies \: 100 \times P = P \times 10 \times n }\\  \\  \tt{ \implies \:P \times 10 \times n = 100 \times P} \\  \\  \tt{ \implies \:10 \times n =  \frac{100 \times  \cancel{P}}{ \cancel{P}} } \\  \\  \tt{ \implies \:10 \times n = 100} \\  \\ \tt{ \implies \: n =  \frac{100}{10}  }\\  \\ \:  \:  \:  \:  \:  \:  \:  \tt{ \therefore \:  \:  n = 10}

 \:  \:  \:  \:  \sf{ \therefore \: \:   \red{No. \:  \:  of  \:  \: years , n =  \underline{ \: 10 \: years.\: }}}

 \underline{ \underline{ \:  \: \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:\: \:  \:  \:  \: \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \: \: \:  \: \:  \:\:  \:  \:   \:  \:  \:  \:   \: \:  \:  \: \:  \:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: }}

  \huge{\underline{ \mathfrak{ \pink{ \:  \: Method \:  \:    \: 2 \:  : \mapsto \: }}}}

 \underline{ \mathfrak{ \: Given, \: }} \\  \\  \text{ \pink{A sum of money become double of itself}} \\  \text{ \pink{ in 10\% under simple interest.}} \\  \\  \underline{ \mathfrak{ \:Suppose, \: }} \\  \\  \text{ \red{Rate of interest , r = 10\%}} \\  \\  \:  \:  \:  \: \text{ \red{No.  of years = n }} \\  \\ \text{ \red{ Principal , P =Rs. 100 }} \\  \\ \text{ \red{Amount, A = Rs. 200}} \\  \\  \sf{ \blue{\therefore Simple \:  \:  Interest  = Amount - Principal }} \\   \\ \sf{ \blue{\implies S.I. = Rs.(200- 100 )}} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \blue{\therefore \:  \:  S.I. = Rs. 100}}

 \underline{ \mathfrak{ \:  \: We \:  \:  know \:  \:  that, \:  \: }} \\  \\  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \tt{S.I. = \frac{P \times r \times n}{100}} \\ \\   \tt{ \implies \:100 =  \frac{ \cancel{100} \times 10 \times n}{ \cancel{100}}  } \\  \\  \tt{ \implies \:100 = 10 \times n } \\  \\ \tt{ \implies \: n =  \frac{100}{10}  }\\  \\ \:  \:  \:  \:   \tt{ \therefore \:  \:  n = 10}

 \:  \:  \:  \:  \sf{ \therefore \: \:   \red{No. \:  \:  of  \:  \: years , n =  \underline{ \: 10 \: years \: }}}

Similar questions