Math, asked by Anonymous, 10 months ago

In how many years will a sum of ₹ 28000 amount to₹ 37268 at a rate of 10%

plz answer me with steps​

Answers

Answered by Anonymous
12

S O L U T I O N :

\bf{\large{\underline{\bf{Given\::}}}}}

  • Principal, (P) = Rs.28000
  • Amount, (A) = Rs.37268
  • Rate, (R) = 10% p.a

\bf{\large{\underline{\bf{To\:find\::}}}}}

The time of the interest.

\bf{\large{\underline{\bf{Explanation\::}}}}}

We know that formula of the compounded annually :

\boxed{\bf{A=P\bigg(1+\frac{R}{100} \bigg)^{n} }}}}

A/q

\longrightarrow\tt{37268=28000\bigg(1+\dfrac{10}{100} \bigg)^{n} }\\\\\\\longrightarrow\tt{\cancel{\dfrac{37268}{28000}} =\bigg(1+\cancel{\dfrac{10}{100} }\bigg)^{n} }\\\\\\\longrightarrow\tt{\cancel{\dfrac{9317}{7000}} =\bigg(1+\dfrac{1}{10} \bigg)^{n} }\\\\\\\longrightarrow\tt{\dfrac{1331}{1000} =\bigg(\dfrac{10+1}{10} \bigg)^{n} }\\\\\\\longrightarrow\tt{3\sqrt{\dfrac{1331}{1000} } =\bigg(\dfrac{11}{10} \bigg)^{n} }\\\\\\

\longrightarrow\tt{\bigg(\cancel{\dfrac{11}{10} }\bigg)^{3} =\cancel{\bigg(\dfrac{11}{10} }\bigg)^{n}}\\\\\\\longrightarrow\bf{n=3\:years}}

Thus;

The time will be 3 years .

Answered by ritisha14
1

your answer of your question yes I know Tamil ..

Lucknow

Sm 2 u

$$\bf{\large{\underline{\bf{Given\::}}}}}$$

Principal, (P) = Rs.28000

Amount, (A) = Rs.37268

Rate, (R) = 10% p.a

$$\bf{\large{\underline{\bf{To\:find\::}}}}}$$

The time of the interest.

$$\bf{\large{\underline{\bf{Explanation\::}}}}}$$

We know that formula of the compounded annually :

$$\boxed{\bf{A=P\bigg(1+\frac{R}{100} \bigg)^{n} }}}}$$

A/q

$$\begin{lgathered}\longrightarrow\tt{37268=28000\bigg(1+\dfrac{10}{100} \bigg)^{n} }\\\\\\\longrightarrow\tt{\cancel{\dfrac{37268}{28000}} =\bigg(1+\cancel{\dfrac{10}{100} }\bigg)^{n} }\\\\\\\longrightarrow\tt{\cancel{\dfrac{9317}{7000}} =\bigg(1+\dfrac{1}{10} \bigg)^{n} }\\\\\\\longrightarrow\tt{\dfrac{1331}{1000} =\bigg(\dfrac{10+1}{10} \bigg)^{n} }\\\\\\\longrightarrow\tt{3\sqrt{\dfrac{1331}{1000} } =\bigg(\dfrac{11}{10} \bigg)^{n} }\\\\\\\end{lgathered}$$

$$\begin{lgathered}\longrightarrow\tt{\bigg(\cancel{\dfrac{11}{10} }\bigg)^{3} =\cancel{\bigg(\dfrac{11}{10} }\bigg)^{n}}\\\\\\\longrightarrow\bf{n=3\:years}}\end{lgathered}$$

Thus;

The time will be 3 years .

Hope its help u

Similar questions