In how many years will a sum of ₹ 28000 amount to₹ 37268 at a rate of 10%
plz answer me with steps
Answers
S O L U T I O N :
- Principal, (P) = Rs.28000
- Amount, (A) = Rs.37268
- Rate, (R) = 10% p.a
The time of the interest.
We know that formula of the compounded annually :
A/q
Thus;
The time will be 3 years .
your answer of your question yes I know Tamil ..
Lucknow
Sm 2 u
$$\bf{\large{\underline{\bf{Given\::}}}}}$$
Principal, (P) = Rs.28000
Amount, (A) = Rs.37268
Rate, (R) = 10% p.a
$$\bf{\large{\underline{\bf{To\:find\::}}}}}$$
The time of the interest.
$$\bf{\large{\underline{\bf{Explanation\::}}}}}$$
We know that formula of the compounded annually :
$$\boxed{\bf{A=P\bigg(1+\frac{R}{100} \bigg)^{n} }}}}$$
A/q
$$\begin{lgathered}\longrightarrow\tt{37268=28000\bigg(1+\dfrac{10}{100} \bigg)^{n} }\\\\\\\longrightarrow\tt{\cancel{\dfrac{37268}{28000}} =\bigg(1+\cancel{\dfrac{10}{100} }\bigg)^{n} }\\\\\\\longrightarrow\tt{\cancel{\dfrac{9317}{7000}} =\bigg(1+\dfrac{1}{10} \bigg)^{n} }\\\\\\\longrightarrow\tt{\dfrac{1331}{1000} =\bigg(\dfrac{10+1}{10} \bigg)^{n} }\\\\\\\longrightarrow\tt{3\sqrt{\dfrac{1331}{1000} } =\bigg(\dfrac{11}{10} \bigg)^{n} }\\\\\\\end{lgathered}$$
$$\begin{lgathered}\longrightarrow\tt{\bigg(\cancel{\dfrac{11}{10} }\bigg)^{3} =\cancel{\bigg(\dfrac{11}{10} }\bigg)^{n}}\\\\\\\longrightarrow\bf{n=3\:years}}\end{lgathered}$$
Thus;
The time will be 3 years .
Hope its help u