Math, asked by knowledgegaming393, 1 month ago

In how many years will a sum of Rs. 5,000 become Rs. 6,655 at the compound interest rate of 10% per annum?​

Answers

Answered by anumolukeshav
4

Answer:

this is the✅ answer for your question

Attachments:
Answered by Anonymous
24

Answer:

Step-by-step explanation:

{\large{\underline{\underline{\bf{Given \: : - }}}}}

  • Amount = Rs.6655
  • Principle = Rs.5000
  • Rate of Interest = 10% per annum

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{To  \: Find\: : - }}}}}

  • Time

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Concept\: : - }}}}}

★ Here we have given that the Principal is Rs.5000Amonut is Rs.6655 and rate is 10% per annum. Here we need to find the time.

★So, we will find out the time by substituting the values in the formula.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Using  \: Formula\: : - }}}}}

\bigstar{\pink{\underline{\boxed{\bf{A={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

Where

  • A = Amount
  • P = Principle
  • R = Rate of Interest
  • T = Time

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Solution\: : - }}}}}

★ Let us find out the Amount by Substituting the values in the formula :

{\dashrightarrow{\sf{A={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}

  • Substituting the values

{\dashrightarrow{\sf{6655={5000{\bigg(1 + \dfrac{10}{100}{\bigg)}^{T}}}}}}

{\dashrightarrow{\sf{6655={5000{\bigg( \dfrac{(1 \times 100) + 10}{100}{\bigg)}^{T}}}}}}

{\dashrightarrow{\sf{6655={5000{\bigg( \dfrac{100 + 10}{100}{\bigg)}^{T}}}}}}

{\dashrightarrow{\sf{6655={5000{\bigg( \dfrac{110}{100}{\bigg)}^{T}}}}}}

{\dashrightarrow{\sf{6655={5000{\bigg( \cancel\dfrac{110}{100}{\bigg)}^{T}}}}}}

{\dashrightarrow{\sf{6655={5000{\bigg( \dfrac{55}{50}{\bigg)}^{T}}}}}}

{\dashrightarrow{\sf{\dfrac{6655}{5000} = {\bigg( \dfrac{55}{50}{\bigg)}^{T}}}}}

{\dashrightarrow{\sf{ \cancel\dfrac{6655}{5000} = {\bigg( \cancel\dfrac{55}{50}{\bigg)}^{T}}}}}

{\dashrightarrow{\sf{\dfrac{1331}{1000} = {\bigg( \dfrac{11}{10}{\bigg)}^{T}}}}}

{\dashrightarrow{\sf{{\bigg(\dfrac{11}{10}\bigg)}^{3} = {\bigg( \dfrac{11}{10}{\bigg)}^{T}}}}}

{\dashrightarrow{\sf{{\bigg( {\cancel\dfrac{11}{10}}\bigg)}^{3} = {\bigg( \cancel{\dfrac{11}{10}}{\bigg)}^{T}}}}}

 \dashrightarrow{\sf{Time = 3 \: years}}

\bigstar{\red{\underline{\boxed{\bf{Time = 3 \: years}}}}}

The time is 3 years.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Answer\: : - }}}}}

  • In 3 years will a sum of Rs. 5,000 become Rs. 6,655 at the compound interest rate of 10% per annum.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Learn \: More\: : - }}}}}

\small\purple{\underline{\boxed{\bf{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}

\small\purple{\underline{\boxed{\bf{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}

\small\purple{\underline{\boxed{\bf{Amount = Principle + Interest}}}}

\small\purple{\underline{\boxed{\bf{ Principle=Amount - Interest }}}}

\small\purple{\underline{\boxed{\bf{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}

\small\purple{\underline{\boxed{\bf{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}

\small\purple{\underline{\boxed{\bf{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions