Math, asked by shubham9297, 1 year ago

in in the adjoining figure pqrs is a rectangle of length 36 CM and breadth 30 cm p u s and ptq quarter circles find the area of shaded part ​

Attachments:

Answers

Answered by suchindraraut17
1

\bold {Total\ Area\ of\ shaded\ region= 627.30\ cm^2}

Step-by-step explanation:

We have a rectangle PQRS

⇒∠P=∠Q=∠R=∠S=90°

In sector PRT,

PR=QT = 36 cm [Radius of same quadrant]

Now,\bold {Area\ of\ sector\ PRT=\frac{\theta}{360} \times \pi r^2}

                                        =\frac{90}{360}\times \pi(36)^2

                                        = \frac{1}{4}\times\frac{22}{7}\times 36\times 36

                                        = 1018.2 cm^2

\bold {Area\ of\ \Delta PTQ = \frac{1}{2}\times base\times height}

                      =\frac{1}{2}\times 36\times 36

                      =648 cm^2

Area of shaded region 1 = Area of sector PRT-Area of ΔPTQ

                                        =1018.2\ cm^2 - 648\ cm^2

                                        = 370.2\ cm^2

Now,in quadrant PSU,

Here PS=SU [Radius of same circle]

\bold {Area\ of\ quadrant\ PSR = \frac{\theta}{360\degree}\pi r^2}

                                    = \frac{90}{360}\times \frac{22}{7}\times 30\times 30

                                    =\frac{1}{4}\times \frac{22}{7}\times 30\times 30

                                    =707.10\ cm^2

\bold {Area\ of\ \Delta PSU = \frac{1}{2}\times base\times height}

                        =\frac{1}{2}\times 30\times 30

                       = 450\ cm^2

Area of shaded region 2= Area of quadrant PSR-Area of ΔPSU

                                       =707.10\ cm^2 - 450\ cm^2

                                       =257.10\ cm^2

Total Area of shaded region = 370.2\ cm^2 + 257.10\ cm^2

                                               = \bold {627.30\ cm^2}

Attachments:
Similar questions