In parallelogram ABCD m∠A = (8x+8) and m∠C = (9x-7) find the measures of m∠B and m∠D?
Answers
For any parallelogram abcd, the formula for the lengths of the diagonals are, p=√x2+y2−2xycosA=√x2+y2+2xycosB p = x 2 + y 2 − 2 x y cos A = x 2 + y 2 + 2 x y cos B and q=√x2+y2+2xycosA=√x2+y2−2xycosB q = x 2 + y 2 + 2 x y cos A = x 2 + y 2 − 2 x y cos
Step-by-step explanation:
estion 1:
In a parallelogram ABCD, ∠A =x°, ∠B = 3x +20°, find x and find ∠C and ∠D.
ANSWER:
In parallelogram ABCD, ∠A and ∠B are adjacent angles supplementary to each other.
Thus, we have:
∠A + ∠B = 180°
Also,
∠A = x° and ∠B = (3x + 20)°
⇒ x° + 3x° + 20° = 180°
⇒ 4x° + 20° = 180°
⇒ 4x° = 160°
⇒ x° = 40°
⇒ x = 40
We know that opposite angles of a parallelogram are congruent.
Thus, we have:
∠C = ∠A = x°
⇒∠C= 40°
∠D = ∠B
⇒ ∠D = 3x° + 20°
= 3(40°) + 20°
= 120° + 20°
= 140°
∴∠D=140°