Math, asked by Umeryousuf, 7 months ago

In parellogram ABCD, two points P and Q are taken on diagonal BD such that DP= BQ 1. TriangleAPD= triangle CQB .2. AP= CQ .3.triangle AQB= triangle CPD AQ=CP APCQ is a parellogram

Answers

Answered by karunap520
4

Answer:

hiii

I mate you answer...

I hope it's helpful for...

Step-by-step explanation:

In parallelogram ABCD, two points PP and QQ are taken on diagonal BD such that DP=BQDP=BQ seefigureseefigure. Show that:

In parallelogram ABCD, two points PP and QQ are taken on diagonal BD such that DP=BQDP=BQ seefigureseefigure. Show that:ii ΔAPD≅ΔCQBΔAPD≅ΔCQB

In parallelogram ABCD, two points PP and QQ are taken on diagonal BD such that DP=BQDP=BQ seefigureseefigure. Show that:ii ΔAPD≅ΔCQBΔAPD≅ΔCQBiiii AP=CQAP=Ciiiiii ΔAQB≅ΔCPDΔAQB≅ΔCPD

In parallelogram ABCD, two points PP and QQ are taken on diagonal BD such that DP=BQDP=BQ seefigureseefigure. Show that:ii ΔAPD≅ΔCQBΔAPD≅ΔCQBiiii AP=CQAP=Ciiiiii ΔAQB≅ΔCPDΔAQB≅ΔCPDiviv AQ=CPAQ=CP

In parallelogram ABCD, two points PP and QQ are taken on diagonal BD such that DP=BQDP=BQ seefigureseefigure. Show that:ii ΔAPD≅ΔCQBΔAPD≅ΔCQBiiii AP=CQAP=Ciiiiii ΔAQB≅ΔCPDΔAQB≅ΔCPDiviv AQ=CPAQ=CPvv APCQ is a parallelogram.

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQ

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQGivenGiven

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQGivenGiven∴ΔAPD≡ΔCQB∴ΔAPD≡ΔCQB

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQGivenGiven∴ΔAPD≡ΔCQB∴ΔAPD≡ΔCQB(ii)(ii) AP=CQAP=CQ

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQGivenGiven∴ΔAPD≡ΔCQB∴ΔAPD≡ΔCQB(ii)(ii) AP=CQAP=CQCPCTCPCT

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQGivenGiven∴ΔAPD≡ΔCQB∴ΔAPD≡ΔCQB(ii)(ii) AP=CQAP=CQCPCTCPCTFromresult(\(i\))Fromresult(\(i\))

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQGivenGiven∴ΔAPD≡ΔCQB∴ΔAPD≡ΔCQB(ii)(ii) AP=CQAP=CQCPCTCPCTFromresult(\(i\))Fromresult(\(i\))iiiiii Consider triangles AQB and CPD,

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQGivenGiven∴ΔAPD≡ΔCQB∴ΔAPD≡ΔCQB(ii)(ii) AP=CQAP=CQCPCTCPCTFromresult(\(i\))Fromresult(\(i\))iiiiii Consider triangles AQB and CPD,AB=CDAB=CD

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQGivenGiven∴ΔAPD≡ΔCQB∴ΔAPD≡ΔCQB(ii)(ii) AP=CQAP=CQCPCTCPCTFromresult(\(i\))Fromresult(\(i\))iiiiii Consider triangles AQB and CPD,AB=CDAB=CDOppositesidesofaparallelogramOppositesidesofaparallelogram

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQGivenGiven∴ΔAPD≡ΔCQB∴ΔAPD≡ΔCQB(ii)(ii) AP=CQAP=CQCPCTCPCTFromresult(\(i\))Fromresult(\(i\))iiiiii Consider triangles AQB and CPD,AB=CDAB=CDOppositesidesofaparallelogramOppositesidesofaparallelogram∠ABQ=∠CDP[∠ABQ=∠CDP[ Alternate interior angles as AB ∥‖ CD and BD is transversal]

Consider triangles APD and CQB, AD ∥BC‖BC and BDBD is transversal.∴∠1=∠2∴∠1=∠2AD =BC[=BC[ Opposite sides of a parallelogram]DP=BQDP=BQGivenGiven∴ΔAPD≡ΔCQB∴ΔAPD≡ΔCQB(ii)(ii) AP=CQAP=CQCPCTCPCTFromresult(\(i\))Fromresult(\(i\))iiiiii Consider triangles AQB and CPD,AB=CDAB=CDOppositesidesofaparallelogramOppositesidesofaparallelogram∠ABQ=∠CDP[∠ABQ=∠CDP[ Alternate interior angles as AB ∥‖ CD and BD is transversal]BQ∴=DP [Given]ΔAQB≅ΔCPDBQ=DP [Given]∴ΔAQB≅ΔCPD

please Mark's as billent....

Similar questions