Math, asked by basitsayyad35, 3 months ago


In Poisson probability distribution if P(r=2)= 3P(r=3), and P(r=4) is given by

A
e/24
B
24/e
С
1/(24e)
D
24e​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

We know,

Probability of any random variable 'r' having mean m using Poisson Distribution is given by

\rm :\longmapsto\:P(r) = \dfrac{ {e}^{ - m} \:  \: {m}^{r} }{r! }

According to statement,

It is given that

P(2) = 3 P(3)

\rm :\longmapsto\:\dfrac{ \cancel{ {e}^{ - m} }\:  {m}^{2} }{2!}  = 3  \dfrac{  \cancel{{e}^{ - m} }\:  {m}^{3}  }{3!}

\rm :\longmapsto\:\dfrac{1}{2 \times 1}  = 3 \times \dfrac{m}{3 \times 2 \times 1}

\bf\implies \:m \:  =  \: 1

Now,

\rm :\longmapsto\:P(4)

\rm \:  \:  =  \: \dfrac{ {e}^{ - m}  \:  {m}^{4} }{4!}

\rm \:  \:  =  \: \dfrac{ {e}^{ - 1}  {(1)}^{4} }{4!}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:m \:  =  \: 1 \bigg \}}

\rm \:  \:  =  \: \dfrac{ {e}^{ - 1}  }{4 \times 3 \times 2 \times 1}

\rm \:  \:  =  \: \dfrac{1}{24e}

Hence,

\bf :\longmapsto\:P(4) \:  =  \: \dfrac{1}{24e}

Similar questions