Math, asked by reliance6882, 1 year ago

In ΔPQR, if 3∠P = 4∠Q = 6∠R, calculate the angles of the triangle.

Answers

Answered by Anonymous
5
\textbf{\huge{ANSWER:}}

\tt{Given:}

3 (Angle P) = 4 (Angle Q) = 6 (Angle R) ...(1)

Now, we know that the \textbf{sum of all the angles is = 180°} (The angle sum property )

Thus;
Angles ( P + Q + R ) = 180°

Multiply the equation by 3:-

=》3 [Angles ( P + Q + R )] = 180° × 3

=》 Angles ( 3P + 3Q + 3R ) = 540°

According to (1) :-

=》 Angles ( 4Q + 3Q + 3R ) = 540°

=》 Angles ( 7Q + 3R ) = 540°

Multiply the equation by 2:-

=》 2 [Angles ( 7Q + 3R )] = 540° × 2

=》 Angles ( 14Q + 6R ) = 1080°

According to (1) :-

=》 Angles ( 14Q + 4Q ) = 1080°

=》 Angles ( 18Q ) = 1080°

=》 Angle Q = \frac{1080°}{18}\\

=》 \textbf{ Angle Q = 60°}

Now, Given is that:

3 (Angle P) = 4 (Angle Q) = 6 (Angle R)

=》 3 (Angle P) = 4 ( 60° ) = 6 (Angle R)

=》 3 (Angle P) = 240° = 6 (Angle R)

Taking both of them separately :-

=》 3P = 240°

=》 P = \frac{240°}{3}\\

=》 \textbf{P = 80°}

Next one :-

=》 6R = 240°

=》 R = \frac{240°}{6}\\

=》 \textbf{R = 40°}
Similar questions