Math, asked by meenasahuja9, 3 months ago

in∆PQR, LP=2LQ and 2LR=3LQ.calculate the angles of ∆PQR​

Attachments:

Answers

Answered by SachinGupta01
4

GIVEN :  

\sf \:  P\:  =  \: 2\: \angle \: Q

\sf \: 2 \: \angle\:R \:  =\:3 \:\angle \:Q

What to Calculate ?

\sf \:  We\:need  \: to  \: calculate \: the \: angles\:of \: \triangle PQR

So, Let's Start :

\sf \:  P\:  =  \: 2\: \angle\: Q

\sf \: 2 \: \angle \:R \:  =\:3 \:\angle \:Q

\sf \: \angle \:R  \:  = \:  \dfrac{3}{2} \:\angle \: \:Q

\sf \:\angle  \:  P\:   + \: \angle \: Q\:  + \:\angle\:R = 180^{ \circ}

\sf \: 2 \:  \angle\:  Q \: + \: \angle\: Q\: \: + \: \dfrac{3}{2}  \: \angle \: Q \:  = 180^{ \circ}

\dfrac{\sf \: 4 \:  \angle\:Q \: +  \: 2 \: \angle \:Q\: +  \: 3 \:\angle \: Q \:}{2}   =  \: 180^{ \circ}

\sf \:  9\: \angle \:Q \:  = \: 360^{ \circ}

\sf \:  \angle\:Q  \: =  \:  \dfrac{360}{9} \: =  \: 40^{ \circ}

\sf \:  \angle\: P \:  = \: 2\: \times  \:40 \: \longrightarrow \:80^{ \circ}

\sf \:  \angle\: R \:  = \:  \dfrac{3}{2} \times 40 \: \longrightarrow \:60^{ \circ}

Similar questions