Math, asked by kunalaChahal533, 1 year ago

In Δ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P

NCERT Class X
Mathematics - Mathematics

Chapter _INTRODUCTION TO
TRIGONOMETRY

Answers

Answered by 201301
8
DIAGRAM OF THE QUESTION ARE GIVEN BELOW IN ATTACHMENT

It is given that PQR is a right Δ, such that <Q = 90 °
                            PR +QR = 25 cm
         and              PQ = 5 cm
         Let,              QR = x cm
         therefore,      PR = (25-x)
         therefore,      By Pythagoras Theorem, we have
                            PR² = QR² + PQ²
         ⇒                (25-x)² = x² + 5²
         ⇒                625 - 50x + x² = x² + 25
         ⇒                -50x = -600
         ⇒                 x = -600/-50 = 12
         i.e.,               PQ = 12 cm
         ⇒                  RP = 25 - 12 = 13 cm
         Now, we have:
                               sin P = RQ/RP = 12/13
                               cos P = PQ/RP = 5/13
                               tan P = RQ/PQ = 12/5
MARK IT AS BEST
Attachments:
Answered by Disha976
4

 \rm { Given \: that, }

 \rm { PR + QR = 25}

 \rm { PQ = 5 }

_____

 \rm { Let \: PR \:  be \: x.</p><p>}

 \rm { \therefore QR = 25 - x</p><p> }

Applying Pythagoras theorem in ΔPQR, we obtain,

 \rm\blue { {PR}^{2} = {PQ}^{2} + {QR}^{2} }

 \rm{ \leadsto {x}^{2} = {(5)}^{2} + {(25-x)}^{2} }

 \rm{ \leadsto \cancel { {x}^{2}} = 25 + 625 \cancel { + {x}^{2}} - 50x }

 \rm{ \leadsto 50x = 650</p><p> }

 \rm{ \leadsto x = \cancel {\dfrac{650}{50}</p><p>}=13cm }

 \rm\red { \therefore, PR = 13 cm</p><p>}

 \rm\red { QR = (25 - 13) cm = 12 cm }

______

Now, the values of sin P, cos P and tan P

 \rm { sin \: P =\dfrac{ side \: opposite \: to \:  \angle P}{Hypotenuse} = \dfrac{12}{13} }

 \rm { cos \: P = \dfrac{ side \: adjacent \: to \:  \angle P}{Hypotenuse} = \dfrac{5}{13} }

 \rm { tan \:  P= \dfrac{ side \: opposite \: to \:  \angle P}{side \: adjacent \: to \:  \angle P } = \dfrac{12}{5} }

Similar questions