Physics, asked by mahesh7876, 10 months ago

In problem 10.9, if 15.0 cm of water and spirit each are further poured into the respective arms of the tube, what is the difference in the levels of mercury in the two arms? (Specific gravity of mercury = 13.6).​

Answers

Answered by Aastha6878
19

 <body bgcolor = orange><font color = white>

Solution :

Height of the water column, h1 = 10 + 15 = 25 cm

Height of the spirit column, h2 = 12.5 + 15 = 27.5 cm

Density of water, ρ1 = 1 g cm–3

Density of spirit, ρ2 = 0.8 g cm–3

Density of mercury = 13.6 g cm–3

Let h be the difference between the levels of mercury in the two arms.

Pressure exerted by height h, of the mercury column:

= hρg

= h × 13.6g … (i)

Difference between the pressures exerted by water and spirit:

= ρ1h1g - ρ2h2g

= g(25 × 1 – 27.5 × 0.8)

= 3g … (ii)

Equating equations (i) and (ii), we get:

13.6 hg = 3g

h = 0.220588 ≈ 0.221 cm

Hence, the difference between the levels of mercury in the two arms is 0.221 cm.

Answered by jack6778
40

Solution :

Height of the water column, h1 = 10 + 15 = 25 cm

Height of the spirit column, h2 = 12.5 + 15 = 27.5 cm

Density of water, ρ1 = 1 g cm–3

Density of spirit, ρ2 = 0.8 g cm–3

Density of mercury = 13.6 g cm–3

Let h be the difference between the levels of mercury in the two arms.

Pressure exerted by height h, of the mercury column:

= hρg

= h × 13.6g … (i)

Difference between the pressures exerted by water and spirit:

= ρ1h1g - ρ2h2g

= g(25 × 1 – 27.5 × 0.8)

= 3g … (ii)

Equating equations (i) and (ii), we get:

13.6 hg = 3g

h = 0.220588 ≈ 0.221 cm

Hence, the difference between the levels of mercury in the two arms is 0.221 cm.

Similar questions