Math, asked by somilverma, 1 month ago

in right angled triangle ABC, angle A = 90° , AB = 8cm, BC = 17cm. find Sin B , Cos B . also prove that tan B × (90 - B)° = 1​​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\mathsf{In\,\triangle\,ABC,\;\angle{A}=90^\circ,\;AB=8\,cm,\;BC=17\,cm}

\textbf{To find:}

\textsf{sinB, cosB}

\textbf{To prove:}

\mathsf{tanB{\times}tan(90^\circ-B)=1}

\textbf{Solution:}

\textsf{By Pythagoras theorem,}

\mathsf{BC^2=AB^2+AC^2}

\mathsf{17^2=8^2+AC^2}

\mathsf{289=64+AC^2}

\mathsf{AC^2=289-64}

\mathsf{AC^2=225}

\mathsf{AC=\sqrt{225}}

\implies\boxed{\mathsf{AC=15\,cm}}

\mathsf{sin\,B=\dfrac{AC}{BC}=\dfrac{15}{17}}

\mathsf{cos\,B=\dfrac{AB}{BC}=\dfrac{8}{17}}

\mathsf{tan\,B=\dfrac{AC}{AB}=\dfrac{15}{8}}

\mathsf{Here,\;C=90^\circ-B}

\mathsf{tan(90^\circ-B)=tan\,C=\dfrac{AB}{AC}=\dfrac{8}{15}}

\mathsf{Now,}

\mathsf{tanB{\times}tan(90^\circ-B)}

\mathsf{=\dfrac{15}{8}{\times}\dfrac{8}{15}}

\mathsf{=1}

\implies\boxed{\mathsf{tanB{\times}tan(90^\circ-B)=1}}

\textbf{Find more:}

1.If 6 tan A -5 = 0 find the value of( 3 Sin A - Cos A) / (5 Cos A + 9 sin A)

https://brainly.in/question/5331430

2.CotA+cosecA=3,then find sinA=?​

https://brainly.in/question/14998903#

3.If 13 sin A= 12 find sec A - tan A

https://brainly.in/question/15409061

Attachments:
Similar questions