In right-angled triangle ABC is which ∠C = 90°, if D is the mid-point of BC, prove that AB² = 4 AD² − 3AC².
Answers
SOLUTION :
Given :
∠C = 90° and D is the mid-point of BC.
In ∆ ACD,
AD² = AC² + CD²
[By using Pythagoras theorem]
CD² = AD² - AC² ……….(1)
In ∆ACB,
AB² = AC² + BC²
[By using Pythagoras theorem]
AB² = AC² + (2CD)²
[D is the mid-point of BC]
AB² = AC² + 4CD²
AB² = AC² +4(AD² - AC²)
[from eq 1]
AB² = AC² + 4AD² - 4AC²
AB² = 4AD² - 4AC² + AC²
AB² = 4AD² - 3AC²
HOPE THIS ANSWER WILL HELP YOU…
Answer:
Step-by-step explanation:
Given :-
ΔABC is a right-angled triangle, with ∠C = 90°.
D is the midpoint of BC.
To Prove :-
AB² = 4 AD² - 3AC²
Solution :-
In ΔABC, By applying Pythagoras' theorem, we get
⇒ AB² = AC² + BC²
⇒ AB² = AC² + (2 CD)²
⇒ AB² = AC² + 4 CD² ....(i)
Similarly, In ΔADC
⇒ AD² = AC² + CD²
⇒ CD² = AD² - AC² .... (ii)
Solving Eq (i) and (ii), we get
⇒ AB² = AC² + 4 (AD² - AC²)
⇒ AB² = AC² + 4 AD² - 4 AC²
⇒ AB² = 4 AD² - 3 AC²
Hence, Proved.