Math, asked by dhairyachavda2005178, 7 months ago

in right triangle ABC , right angled at B, if tan A = 1 , then varify 2cos A sin A = 1​

Answers

Answered by neelamjyoti653
0

Answer:

Yr solution above✌

#Stay blessed....... ✌

Attachments:
Answered by TheProphet
2

S O L U T I O N :

\underline{\bf{Given\::}}

In right angled Δ ABC, right angled at B, if tan A = 1

\underline{\bf{Explanation\::}}

Firstly, attachment a figure of right angled triangle according to the question.

As we know that,

\boxed{\bf{tan\:\theta = \frac{Perpendicular}{Base} }}

A/q

\mapsto\tt{tan\:A = \dfrac{BC}{AC} = \dfrac{1}{1} }

\underline{\mathcal{BY\:\:PYTHAGORAS\:\:THEOREM\::}}

→ (Hypotenuse)² = (Base)² + (Perpendicular)²

→ (AB)² = (AC)² + (BC)²

→ (AB)² = (1)² + (1)²

→ (AB)² = 1 + 1

→ (AB)² = 2

→ AB = √2

Now,

V E R I F I C A T I O N :

Taking L.H.S :

\mapsto\tt{2 cos A .sin A}

\mapsto\tt{2\times \dfrac{Base}{Hypotenuse} \times \dfrac{Perpendicular}{Hypotenuse}}

\mapsto\tt{2\times \dfrac{AC }{AB} \times \dfrac{BC}{AB}}

\mapsto\tt{2\times \dfrac{1 }{\sqrt{2} } \times \dfrac{1}{\sqrt{2} }}

\mapsto\tt{2\times \dfrac{1}{2} }

\mapsto\tt{\cancel{\dfrac{2}{2} }}

\mapsto\bf{ 1}

Thus,

L.H.S = R.H.S

Verified .

Attachments:
Similar questions