Math, asked by shara06, 19 days ago

In right triangle ABC, right angled at c, if tanA=1 then the value of 2sinA cosA is​
Steps are needed
correct answer will be marked as brainliest

Answers

Answered by PopularStar
41

Given:

In right triangle ABC Angle C=90 degree

tan A=1

To find:

2sin Acos A=12sinAcosA=?

Solution:

tan A= \sf \dfrac{Perpendicular\;side}{Base}=\frac{1}{1}

⇢BC=k

⇢AC=k

Using Pythagoras theorem

 \sf{(Hypotenuse)^2=(Perpendicular)^2+(Base)^2(Hypotenuse)}

 \sf{AB^2=AC^2+BC^2AB}

 \sf{AB^2=k^2+k^2=2k^2AB}

⇢AB= \sqrt{2k^2}=k\sqrt{2}

⇢Sin A= \sf \dfrac{Perpendicular\;side}{Hypotenuse} = \sf \dfrac{BC}{AB}=\dfrac{k}{k\sqrt{2}} = \sf \dfrac{1}{\sqrt{2}}

⇢cos A= \sf \dfrac{Base}{Hypotenuse} = \sf \dfrac{AC}{AB}=\sf \dfrac{k}{k\sqrt{2}} = \sf \dfrac{1}{\sqrt{2}}

Lets Substitute the values

2sinAcos A=2 \times \dfrac{1}{(\</p><p>sqr{2}}\times \dfrac{1}{(\sqrt{2}}

⇢2sinA cos A= \sf \dfrac{2}{(\sqr {2})^2} = \sf \dfrac{2}{2}

⇢2sinA cos A= 12sinA cosA=1

Attachments:
Similar questions