Math, asked by o9898, 18 days ago

In right triangle $PQR$, we have $\angle Q = \angle R$ and $PR = 6\sqrt{2}$. What is the area of $\triangle PQR$?

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

In right triangle PQR, ∠Q = ∠R.

It means, ∠P = 90°

We know, Side opposite to equal angles are equal

So, it means PQ = PR

As it is given that

\rm \: PR = 6 \sqrt{2}  \\

\rm\implies \:PQ = PR = 6 \sqrt{2}  \\

We know, Area of right angle triangle is given by

\boxed{ \rm{ \:Area \:  =  \:  \frac{1}{2}  \times base \times height \: }} \\

So,

\rm \: Area_{(\triangle\:PQR)} \:  =  \: \dfrac{1}{2} \times PQ \times PR \\

\rm \: Area_{(\triangle\:PQR)} \:  =  \: \dfrac{1}{2} \times 6 \sqrt{2}  \times 6 \sqrt{2}  \\

\rm\implies \:Area_{(\triangle\:PQR)} = 36 \: square \: units

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Similar questions