In square PQRS, ∆OPQ is a equilateral triangle.
Prove that: ∆OPS =~ ∆OQR
Answers
Answer:
Step-by-step explanation:
Given:
Quadrilateral PQRS is a square.
ΔOPQ is a equilateral triangle.
To prove:
ΔOPS≅ΔOQR
Proof:
1) Quadrilateral PQRS is a square..........given
∴ PQ=QR=RS=PS........Property of sides of a square
Let each side of a square be 'a' units
∴ PQ=QR=RS=PS=a
2) ΔOPQ is a equilateral triangle.....given
∴OP=OQ=PQ..........property of sides of an equilateral triangle.
3) From points 1) and 2),
It can be said that OP=OQ=PQ=a
4) ΔOPQ is a equilateral triangle.....given
∴ ∠OPQ=∠OQP=∠POQ=60°.......property of angles of an equilateral triangle.
5) Quadrilateral PQRS is a square..........given
∴ ∠PQR=∠QRS=∠RSP=∠SPQ=90°.....property of angles of a square.
6) ∠SPQ=∠SPO+∠OPQ.........angle addition postulate.
From 4) and 5), ∠SPQ=90° and ∠OPQ=60°
∴ 90°= ∠SPO+60°
∠SPO= 90°-60°=30°
7) Similarly we can prove ∠RQO to be equal to 30°.
8) In the triangles ΔOPS and ΔOQR,
seg. PS=seg. QR......both equal to 'a'...from point 1)
seg. OP=seg. OQ.....both equal to 'a'...from point 2)
∠SPO=∠RQO....both equal to 30°....from points 6) and 7)
∴ ΔOPS≅ΔOQR......SAS test of congruence.