Math, asked by mustafaisal92, 11 months ago

In the adjacent figure, angleB=90° and
DE || BC.If AD= sin teta, DB=cos teta
AE=1, then EC=​

Answers

Answered by savitatehre111
5

Step-by-step explanation:

hey muatafa aapne figure hi di nahi so how can we give u answer

aapne angle theta konsa hai woh bhi nahi bataya

Answered by lublana
0

EC=cot\theta

Step-by-step explanation:

\angle B=90^{\circ}

AD=sin\theta

DB=cos\theta

AE=1

DE\parallel BC

\angle ADE=\angle B=90^{\circ}

Reason: corresponding angle theorem

\angle AED=\angle ACB

Reason: corresponding angle theorem

\triangleADE\sim \triangleABC

Reason: AA similarity postulate

When two triangle are similar then the ratio of their corresponding sides are equal

\frac{AD}{AB}=\frac{DE}{BC}=\frac{AE}{AC}

\frac{sin\theta}{sin\theta+cos\theta}=\frac{1}{1+EC}

sin\theta+ECsin\theta=sin\theta+cos\theta

ECsin\theta=sin\theta+cos\theta-sin\theta=cos\theta

EC=\frac{cos\theta}{sin\theta}

EC=cot\theta

cot\theta=\frac{cos\theta}{sin\theta}

#Learns more:

https://brainly.in/question/13446745

Attachments:
Similar questions