Physics, asked by aryadeep265, 9 months ago

In the adjacent figures, masses of A, B and C are 1kg , 3kg and 2kg respectively then find the acceleration of the system?​

Attachments:

Answers

Answered by BrainIyMSDhoni
78

 \sf  \large {Given - } \\ \\ \sf \: Mass \: of \: A = 1kg \\  \\ \sf \: Mass \: of \: B = 3kg \\  \\ \sf \: Mass \: of \: C = 2kg \\  \\   \sf  \large {To \: Find - } \\  \\  \sf \: Accleration \: of \: the \: system \\  \\   \sf\large{Solution - }

 \sf \: In \: the \: case \: of \: net \: pulling \: force \\  \\ \rightarrow \sf \: m_{A}g \sin60 \degree + m_{B}g \sin60 \degree - m_{C}g \sin30 \degree \\  \\ \rightarrow \sf (m_{A} + m_{B})g \sin60 \degree - m_{C}g \sin30 \degree \\  \\  \rightarrow \: (1 + 3) \times 10 \times  \frac{ \sqrt{3} }{2}  - 2 \times 10 \times  \frac{1}{2} \\  \\ \rightarrow \: 4 \times 10 \times  \frac{ \sqrt{3} }{2}  -  \cancel2 \times 10 \times  \frac{1}{ \cancel2} \\  \\ \rightarrow \sf \:  \cancel4 \times 10 \times  \frac{ \sqrt{3} }{ \cancel2}  - 10 \\  \\  \rightarrow \sf \: 20 \: \times  \sqrt{3}  - 10 \\  \\  \rightarrow \sf \: 20 \times 1.732 - 10 \\  \\  \rightarrow  \sf \:  34.64 - 10 \\  \\  \rightarrow \sf   \red{\large{\: 24.64N}}

Now-

\sf \: Total \: mass \: being \: pulled = A + B + C \\ \\ \sf \: Total \: mass \: being \: pulled = 1 + 3 + 2 \\  \\ \sf \: Total \: mass \: being \: pulled = 6 \\  \\   \large \bold{Therefore - } \\  \\  \sf \: Accleration \: of \: the \: system(a) =  \frac{24.64}{6}  \\  \\ \sf \: Accleration \: of \: the \: system(a) =  4.1m {s}^{ - 2}  \\  \\  \large \bold{Hence - } \\  \\  \sf \: Accleration \: of \: the \: system \: is \: 4.1m {s}^{ - 2}.


ShivamKashyap08: Perfectly Answered!! ❤
Answered by NiteeshJaiswal9
71

Explanation:

Solution is in the attachment

Attachments:
Similar questions