Math, asked by rishirakeshjain, 20 days ago

In the adjoining figure, Find : sin , cos O & tan 0. Also find : sin a, cos a and tan a. B In the adjoining figure, 2O = 90° & - D с =​

Answers

Answered by rakshitpandav00000
1

Answer:

mark me as the brainlist answer

Step-by-step explanation:

AB = a

⇒ AD + DB = a

⇒ AD + AD = a

⇒ 2 AD = a

⇒ AD =

2

a

Thus, AD = DB =

2

a

By Pythagoras theorem, we have

AC

2

=AB

2

+BC

2

⇒b

2

=a

2

+BC

2

⇒BC

2

=b

2

−a

2

⇒BC=

b

2

−a

2

Thus, in ΔBCD, we have

Base = BC =

b

2

−a

2

and Perpendicular = BD =

2

a

Applying Pythagoras theorem in Δ BCD, we have

⇒BC

2

+BD

2

=CD

2

⇒(

b

2

−a

2

)

+(

2

a

)

2

=CD

2

⇒CD

2

=b

2

−a

2

+

4

a

2

⇒CD

2

=

4

4b

2

−4a

2

+a

2

⇒CD

2

=

4

4b

2

−3a

2

⇒CD=

2

4b

2

−3a

2

Now,

sin

2

θ+cos

2

θ=(

4b

2

−3a

2

a

)

2

+(

4b

2

−3a

2

2

b

2

−a

2

)

2

⇒sin

2

θ+cos

2

θ=

4b

2

−3a

2

a

2

+

4b

2

−3a

2

4(b

2

−a

2

)

⇒sin

2

θ+cos

2

θ=

4b

2

−3a

2

4b

2

−3a

2

=1.

Similar questions