Math, asked by hiyakundu03, 5 months ago

In the adjoining figure, find the value of sin B cos C + sin C cos B​

Attachments:

Answers

Answered by OfficialPk
18

Answer:

according \: to \: pythagorous \: thereom \\  {ab}^{2} +  {ac}^{2}   =  {bc}^{2}  \\  {6}^{2}  +  {ac}^{2}  =  {10}^{2} \\ 36  +  {ac}^{2}   = 100 \\  {ac}^{2}  = 100 - 36 \\  {ac}^{2} = 64 \\ ac =  \sqrt{64}   \\ ac = 8

from \: the \: figure \\  \sin(b)  =  \frac{opposite \: to \: b}{hypotnuse}  =  \frac{8}{10}  \\  \cos(c)  =  \frac{adjacent \: to \: c}{hypotnuse}  =  \frac{8}{10}  \\  \sin(c)  =  \frac{opposite \: to \: c}{hypotnuse}  =  \frac{6}{10}  \\  \cos(b)  =  \frac{adjacent \: to \: b}{hypotnuse}  =  \frac{6}{10}

 =  \sin(b)  \cos(c)  +  \cos(b)  +  \sin(c)  \\   = \frac{8}{10}  \times  \frac{8}{10}  +  \frac{6}{10}  \times  \frac{6}{10}  \\  \frac{64}{100}  +  \frac{36}{100}  \\  =  \frac{100}{100}  \\  = 1

hope it helps you....follow me.....plzzz mark me as brainlist

Answered by hukam0685
1

Step-by-step explanation:

Given: Figure attached.

To find: Value of

sin B cos C + sin C cos B \\

Solution:

We know that in a right triangle, one can calculate all the trigonometric ratios for both acute angles.

Step 1 : Find base of ∆ABC

Apply Pythagoras theorem

Hypotenuse² =Base²+ Perpendicular²

( {10)}^{2}  =  {Base}^{2}  + ( {6)}^{2}  \\

AC^2=100-36\\

AC^2=64 \\

AC=8 \\

Step 2: Find trigonometric ratios of expression.

sin \: B =  \frac{ \text{side \: opposite \: to \: angle \: B}}{hypotenuse}  \\

sin \: B =  \frac{AC}{BC} \\

sin \: B =  \frac{8}{10} \\

\bf sin \: B =  \frac{4}{5} \\

sin \: C=  \frac{ \text{side \: opposite \: to \: angle \: C}}{hypotenuse}  \\

sin \: C =  \frac{AB}{BC} \\

sin \: C =  \frac{6}{10} \\

\bf sin \: C =  \frac{3}{5} \\

cos \: B=  \frac{ \text{side \: adjacent\: to \: angle \: B}}{hypotenuse}  \\

cos\: B =  \frac{AB}{BC} \\

cos\: B =  \frac{6}{10} \\

\bf cos \: B =  \frac{3}{5} \\

cos \: C=  \frac{ \text{side \: adjacent\: to \: angle \: C}}{hypotenuse}  \\

cos\: C =  \frac{AC}{BC} \\

cos\: C =  \frac{8}{10} \\

\bf cos \: C =  \frac{4}{5} \\

Step 3: Put the values of sin C, cos C, cos B and sin C.

sin B cos C + sin C cos B  =  \frac{4}{5}  \times  \frac{4}{5}  +  \frac{3}{5}  \times  \frac{3}{5}  \\

or

 =  \frac{16}{25}  +  \frac{9}{25}  \\

or

 =  \frac{25}{25}  \\

 sin B cos C + sin C cos B  =  1

option b is correct.

Final answer:

\bf sin B cos C + sin C cos B  = 1\\

Option b is correct.

Hope it helps you.

To learn more on brainly:

Cosec²57 – tan²33 =? a. 0 b. 1 c. -1 d. 2

https://brainly.in/question/28060939

1. If sin x =3/5 and cos y =12/13, evaluate:

i)sec2 x

ii)tan x + tan y

https://brainly.in/question/4617646

Attachments:
Similar questions